We will prove: (Dept hreduction for formulas) [Brent' 13]
Thu 1. If f is computed by an algebraic formula of size s, then it is computed by an algebrale formula of depth $O(\log s)$ (ad hence of she pay (s)).
Def: $\operatorname{VNC}^{k}=\left\{f: f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]\right.$ is computed by a chcult of she poly (u) and depth $O\left(\log ^{k} n\right)$, and $\left.\operatorname{deg}(f) \leq p_{0} \operatorname{ly}(n)\right\}$.
Cor: $V F=V N C^{\prime}$
Pt: By Thu, $t \in V F$ is computed by a formula (and hence a clvceave) of depth $O(\log n)$ and she poly (n). So $\cup F \subseteq V N C^{\prime}$.
Conversely, for $f \in V N C^{\prime}$, we may turn a chrcuct of depth $O(\log n)$ into a formula of depth $O(\log n)$, and increase its size by at most a factor of $2^{(\log n)}=$ poly (n). So $V N C^{\prime} \subseteq V F$.

$\iota^{\text {proved later. }}$
Thu 2 (Depth redaction for clrcults) [Valiant-Skyum-Berkowitz-Rackoff 183]
If f is computed by a cirairt of sizes s and $\operatorname{deg}(f)=d$, then f is coupited by a curcuit of size pay (s, d) and depth $O(\log d((\log d+\log s))$.
Cor: $\quad V P=V N C C^{2}$.
Depth reduction for formulas.
The underlying graph of a formula is a tree.
Its depth is $\gg \log$ (size) if it is "highly unbalanced": ه Idea: balancing the tree
Sane idea was originally used for Boolean formulas [Spira' 71 , KLrapchenko 'Kos] $f_{n}:=f f_{0} \quad f_{1}:=H_{0}$

Sane idea was originally used for Boolean formulas [Spira' 7 I, KLrapchenko 'Kos] Boolean case

Then recurve.
In the algeprace setting, we cant use 0/1, but a shinar idea works. observe that u is an affine function in v, since v is used only once in the formula confuting u. So we may decompose u into the "lunar part" and the "constant part."
Pf of Thu 1: We argue that we can balance the formula T_{f} computing f such that the sutures of the output gate have size $\leq c .5$ for where $S=\operatorname{size}\left(T_{f}\right)$. Then recuse.
Came we may choose a gate $g \in T_{f}$ such that the subtree/ rooted at g was ste $E\left[\frac{1}{3} s, \frac{2}{3} 3\right]$
 Tg_{g}

Pf of the claim: choose g sit. size $(T g) \geq \frac{1}{3} s$.
If $\operatorname{size}\left(T_{g}\right)>\frac{2}{3} s$, then for at least one children g^{\prime} of g, the subtrree T_{g} at g^{\prime} has size $\geqslant \frac{1}{3} 5$. Replace g by g^{\prime} and repeat, \square
(Abuse the notation and use $f, g \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ to clenote both the gates and their correspading polynomials.)
Let $h \in \mathbb{F}\left[x_{1}, \cdots, x_{n}, y\right]$ be the polynuial computed by T_{n},

Then $f=h\left(x_{1}, \cdots, x_{n}, g\left(x_{1}, \cdots, x_{n}\right)\right)$
$\frac{1}{3} s \leq \operatorname{sine}\left(T_{n}\right)$, she $\left(T_{g}\right) \leq \frac{2}{3} s$ by the chalice of g.
As T_{h} is a formula, h is an affine function in Y.
ie., $h=h_{1} \cdot Y$ tho for some $h_{0}, h_{1} \in \mathbb{F}\left[X_{1}, \cdots, x_{2}\right]$
ie., $h=h_{1} \cdot y$ tho for some $h_{0}, h_{1} \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$
Note $h_{0}=h\left(x_{1}, \cdots, x_{n}, 0\right), \Rightarrow h_{0}$ is compated k_{y} a formula of shee $\leq \frac{2}{3} s$

$$
h_{1}=\frac{\partial h}{\partial y}
$$

Cousder a gate l in T_{n}, If $l=y$, then $\frac{\partial l}{\partial y}=1$.
As ported out by Pooga, we con siuply If y is not in the subtwee T_{l} rooted at l, compute h, as $h\left(x_{1}, \cdots, x_{n}, 1\right)-h_{0}$ $=h\left(x_{1}, \cdots, x_{n}, 1\right)-h\left(x_{1}, \cdots, x_{n}, 0\right)$

If $l=l_{1}+l_{2} \quad y \in T_{l} \quad$ then $\frac{\partial l}{\partial y}=0$
If $l=l_{1}+l_{2}, y \in T_{1}$, then $\frac{\partial l}{\partial y}=\frac{\partial l_{1}}{\partial y}$.
If $l=l_{1} \cdot l_{2}, y \in T_{l_{1}}$, then $\frac{\partial l}{\partial y}=\frac{\partial l_{1}}{\partial y} \cdot l_{2}$.

$$
\text { in } x_{1}, \cdots, x_{n}
$$

As $f=h\left(x_{1}, \cdots, x_{n}, g\right)$ and $h=h_{1} y+h_{0}, f=h_{1} \cdot g$ tho.

formula shzes for g, h_{0}, h_{1}

$$
\text { are } \leq \frac{2}{3} s
$$

Removing division gates in formulas.
Thm Suppose f is computed by a formula of size s with divison gates, and $d=\operatorname{deg}(f)$. If $|\mathbb{F}|>s(d+1)$, then f can be compited by a formula of size poly (s, d) without diusiongates.
In general, f can be computed by a formula of size (sd) $P\left(\log \lg _{I / F}(s d x)\right.$.
Pf. Proced as before, Compule f as Homsd $\left(g\left(1+t+\cdots t^{d}\right)\right)$ where $f=h / g$ and $t=1-g$.
Use depth reduction. Depth for $g(1+t+\cdots t d)$ is $O(\log s t \log d)$. Previouly, Hom, ‥ Houmd of $g\left(1+t+\cdots+t^{d}\right)$ are computed by:

Previously, Homo, <compat>romd of $g\left(1+t+\cdots+t^{a}\right)$ are compared by:

$$
\operatorname{Hon}_{i}\left(l+l_{2}\right)=\operatorname{Hom}_{i}\left(l_{1}\right)+\operatorname{Hom}_{i}\left(l_{2}\right) \text { and } \operatorname{Ham}_{i}\left(l_{1} l_{2}\right)=\sum_{\alpha j \leq i} \operatorname{Hom}_{j}\left(l_{1}\right) \operatorname{Hon}_{i, j}\left(l_{2}\right)
$$

Increases the depth
by a factor of $O(\log d)$
$\Rightarrow \operatorname{sine}(s d)^{o(\log d)}$.
Instead, we cayuse $\operatorname{Hom}_{i}\left(g\left(1+t+\cdots t^{d}\right)\right.$ using interpolation:
Let F be the formula computing $g\left(1+t+\cdots+t^{d}\right) . F_{a}=F\left(a X_{1}, a X_{n}\right)$

May not be homogeneers,
but this is fine
$, a_{0}, \because a_{D} \in \mathbb{F}$ are distract.
where D is an urperboual for

$$
\begin{aligned}
& \operatorname{deg}(g(1+t+\cdots+d)) \\
& D \leq s+s d=s(d+1) . \\
& \text { Need }|\mathbb{F}| \geq D+1 .
\end{aligned}
$$

If $|F|<D+1$, can work over anextession field K
wt degree $[\mathbb{K}: \pi] \leq \log _{|F|} D=O\left(\log _{F}(\right.$ sd $)$
Simulating t and X of K over \mathbb{F}. X be comes $k \times k$ matrices iv where $k=[K: 1 F]$
increases the dapth by a factor of $O(\log k)$

$$
\begin{aligned}
& =O\left(\log _{\log }^{F}(s d)\right) . \\
& \Rightarrow \text { size }=(S d)^{O\left(\log \log _{k}(s d)\right) .} \square \square
\end{aligned}
$$

